Detection of Retinal Neovascularization Using Optimized Deep Convolutional Neural Networks
نویسندگان
چکیده
The most common disease that is found among people across the world Diabetes and it predicted to increase more in upcoming years by World Health Organization (WHO). People who are diabetic for a longer period likely have Diabetic Retinopathy (DR), an eye which can lead blindness this cannot be reversed. One of severe stage problems DR Retinal Neovascularization (RN), i.e., outburst retinal blood vessels. Residual Network (ResNet) has effective technique called Skip or Connections solves problem vanishing gradient during backpropagation. ResNet50 50 layers deep network omits signal representations learns from residual leading predict RN with 88.97% accuracy.
منابع مشابه
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملAircraft Detection by Deep Convolutional Neural Networks
Features play crucial role in the performance of classifier for object detection from high-resolution remote sensing images. In this paper, we implemented two types of deep learning methods, deep convolutional neural network (DNN) and deep belief net (DBN), comparing their performances with that of the traditional methods (handcrafted features with a shallow classifier) in the task of aircraft ...
متن کاملDeep Convolutional Neural Networks for pedestrian detection
Pedestrian detection is a popular research topic due to its paramount importance for a number of applications, especially in the fields of automotive, surveillance and robotics. Despite the significant improvements, pedestrian detection is still an open challenge that calls for more and more accurate algorithms. In the last few years, deep learning and in particular convolutional neural network...
متن کاملAbnormality Detection in Mammography using Deep Convolutional Neural Networks
Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Trends in Computer Science and Smart Technology
سال: 2022
ISSN: ['2582-4104']
DOI: https://doi.org/10.36548/jtcsst.2022.1.006